STABILIZING PERSISTENT CURRENTS IN A JOSEPHSON JUNCTION NECKLACE

we study metastable finite circulation states in a toroidal superfluid with a variable number, n, of Josephson junction (Josephson junction necklace)

the *n* junctions are spatially-separated but are *not independent* because of the system's topology

Pezzè L., et al Nature Communications (2024)

1D beyond the approximation of narrow junctions

$$\delta \varphi \approx \frac{2\pi w}{n} \qquad \qquad J_c \approx \frac{\hbar}{mR^2} \frac{nf(w,n)}{8\pi} \qquad f(w,n) \stackrel{\text{def}}{=} (2\pi)^2 \left[\int_0^{2\pi} d\theta \frac{1}{\rho(\theta;w,n)} \right]^{-1} \leq f_s$$

numerical solutions of the 1D GPE:

Pezzè L., et al Nature Communications (2024)

Experiment

- Preparation of finite circulation states in the clean ring $w_0 = [1,2,3,4]$
- Ramp up the barriers over 1 ms (larger than \hbar/μ and shorter than typical dynamics times)

 $R_{in} \approx 11 \,\mu m$ $R_{out} \approx 21 \,\mu m$ $\mu/(2\pi\hbar) = 850 \,Hz$ $V_0/\mu = 1.3$ $\sigma/\xi = 1.2$

Single shots interferograms

$$\langle w(t) \rangle = w_f + \Delta w e^{-\Gamma t}$$

each point is the average over 15 realizations

Pezze L., et al Nature ConOmunications (2024)

Leggett's Superfluid fraction

Conclusions and Perspectives

- On demand excitation of persistent currents in superfluid rings and decay via vortex emission
- Generalization to supe $i\hbar \frac{\partial}{\partial t} \psi(x, y, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{torus} + g^{2d} N |\psi(x, y, t)|^2 \right] \psi(x, y, t)$ ordered or disordered configurations): *preliminary* results communications communication in echanism (unpublished)

- Fermions: the increasing number of Josephson barriers might compete with dissipative effects, such as Cooper pairbreaking
- Supersolids: density modulations can be associated to effective Josephson junctions

Biagioni G., et al Nature (2024)

The extraordinary experimental control paves the way to include quantum fluctuations effects

1D beyond the approximation of narrow junctions

