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Outlook

Role of topology in inhomogeneous networks

1) Free bosons

2) Copper pairs

3) Hard-core bosons 

4) Limit of large n of O(n) models



  

- Long term goals

To induce desired macroscopic coherent behaviors by acting 
on the topology of networks: 

Enhance response of the system

Reduce effects of noise 

Inhomogeneous network = non-translationally invariant 
network

Inhomogeneity due to topology (= how the lattice sites are 
connected) and/or to external fields



  

Free bosons on a star lattice

O

1 1 1 2

2 1
4 1 3 1

5 1

6 1
7 1 8 1

arms

Total number of sites:



NS pL 1



zi



zO

coordination number of a given site:  2

coordination number of the center:  p



ˆ H  t Aij
i, j
 ˆ a i

ˆ a j
Spatial Bose-Einstein condensation in the center at 



T TC



 t Aij
j
  ( j) E (i)



  

Ground-state wavefunction
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Adding 
arms 

enhances 
localization

Exponentially localized around 
the center, i.e. around 
the topological defect 
(~Anderson localization on 
inhomogeneous media)



  

Boson distribution
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x far away form the center

I. Brunelli et al., J. Phys. B 37, S275 
(2004) 
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  ;1   Signature of the spatial 
Bose-Einstein condensation:
decrease of the Josephson 
critical currents 
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Ground-state 
eigenfunction 
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Free particles on a comb lattice
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 Bose-Einstein critical 
temperature 

for free bosons

 far from (close to) the center: critical 
current decrease (enhancement) 



  

Combs of Superconducting Josephson 
junctions

-Nb trilayer technology

-Josephson critical currents 

- capacitance 

- classical regime 

P. Silvestrini et al., Phys. Lett. A 370, 499 (2007)
P. Sodano et al., New J. Phys. 8, 327 (2006)
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Spectrum 

chaintheonpositioni 

Planewave solutionsGround state localized around the backbone – 
“Hidden” spectrum of localized states

−t∑
j

A ij ψα ( j )=eα ψα ( i )

Bogoliubov-de Gennes theory 
for the critical current enhancement 
in comb shaped Josephson networks



  

Bogoliubov-de Gennes equations:
continuous case
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For an inhomogeneous fermionic systems with attractive 
interactions 

Bogoliubov-
de Gennes 
(BdG) Equations 

Self-consistency conditions 
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Bogoliubov-de Gennes 
Equations:
lattice case
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Lattice BdG Equations 

Hopping parameter 
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Encoding the network´s 
connectivity (=topology)
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Discretization:

Self-consistency condition

Lattice chemical potential 



  

Lattice Bogoliubov-de Gennes equations 
for the comb
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Away from the backbone, the fingers may be regarded as a 
linear chain 
(U(i)=Uc and i)=c). Setting on the backbone U(i)=Ub and 
i)=b, one gets with  

Contribution of the localized 
eigenstates of the adjacency matrix

At low temperature:



  

Comparison for the critical 
currents with the experimental 

results



  

Cooper pairs are hard-core bosons: XX 
model on the Y-junction (i.e., hard-core 

bosons on a Y-junction)



  

For a chain

Jordan-Wigner transformations

But for a Y-junction?!



  

Proposed procedure to perform a Jordan-
Wigner transformation

giving raise to a local fermionic model (I)
[N. Crampe' and A. Trombettoni, Nucl. Phys. B (2013)]

Introduce an auxilary site “0”

      

[see as well subsequent papers by A. Tsvelik in 2014-2015 
for the Ising transverse field model at the critical point with 
the generalization to more than 3 legs]



  

Procedure to perform 
a Jordan-Wigner transformation

giving raise to a local fermionic model (II)
[N. Crampe' and A. Trombettoni, Nucl. Phys. B (2013)]

Jordan-Wigner transformation

      

Notice that for a spiral ordering the Hamiltonian would be not quadratic...



  

Final result: a Kondo model 

4-channel Kondo model:



  

In the continuous limit the obtained 
Hamiltonian is integrable!

“Topological” Kondo model 
[B. Beri and N. R. Cooper, PRL (2012)] 

Exact results
At T=0 → A. Altland, B. Béri, R. Egger, and A. M. Tsvelik, J. Phys. A (2014)

At finite T → F. Buccheri, H. Babujian, V. E. Korepin, P. Sodano, and A. 
Trombettoni, Nucl. Phys. B (2015)   

 



  

Exact results include:
junction ground-state energy

junction entropy at T=0

junction specific heat:

and the junction free energy [not reported here]

Results available also for the anisotropic XY model in a transverse 
fields on a Y-junction [D. Giuliano, P. Sodano, A. Tagliacozzo, and A. Trombettoni, NPB 
(2016)]



  

How to do it with ultracold atoms?

We need:

1) hard-core bosons (in the continuos 
limit) →  Tonks-Girardeau gases

2)...we need as well a Y-
junction!

Holographic traps provide an ideal tool to 
perform such geometries 



  

Holographic optical traps for 
atom-based topological Kondo 

devices
[F. Buccheri, G. D. Bruce, A. Trombettoni, D. Cassettari, H. 

Babujian, V. E. Korepin, and P. Sodano, NJP (2016)]

Kondo temperature with barriers of 2-3 microns is ~5-10 nK



  

Outlook

Role of topology in inhomogeneous networks

1) Free bosons

2) Copper pairs

3) Hard-core bosons 

4) Limit of large n of O(n) models → work in progress 
with Nikita Titov. Main result: the limit of large n, 
that for translationally invariant systems gives the 
free bosons, is not giving free bosons for 
inhomogeneous networks → the localized state 
contribution disappears



  

Thanks!



  

Creating a star-shaped network 
with ultracold bosons
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Temperatures ~ 0-500 nK 
Number of particles ~ 1000-10000
Number of wells ~ 100

Corresponding 
network



  

Lattice Bogoliubov-de 
Gennes equations for the 

chain
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We have to set

One gets the „bulk“ BCS results with 
<<t 

0~  cUµ



  

Retrieving the standard BCS theory 

In the homogeneous limit, the quantum number  is the momentum k: 

Putting U=0 and µ=EF and assuming a BCS point-like interaction, 
one gets the BCS equation for the gap:  











 


 D

D

E
E

dEVn BCS 







22

22 2
tanh

2
)0(1





























k

k
k

k

k
k

rki
kk

rki
kk

kkk

E
V

E
U

eVLrveULru

UµmkEE
























1
2
11

2
1

)()(

2/

22

2/32/3

2222



  

Relation between the chemical potential 
and the Fermi energy 

FEU 

Using the equation for the number of particles

it follows at T=0 when <<EF 

In general: since U<0, then µ<EF , increasing the attraction, 
the Hartree-Fock term U increases and the chemical potential µ 
decreases.
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Superconducting Josephson junctions 
on a comb lattice

On a comb of superconducting Josephson networks, one 
expects that critical currents along the backbone 
increase and along the fingers decrease:

a) 4.2 K
b) 1.2 K

backbone
vs. chain

finger
vs. chain



  

Some examples of inhomogeneity effects (I)

Free bosons undergo Bose-Einstein 
condensation: they localize on the 
comb’s backbone
[R. Burioni et al., EPL 52, 251 (2000)]

Superconducting grains: increasing 
the Josephson critical current along 
the backbone
[P. Sodano et., New J. Phys. 8, 327 (2006)]

Ground states with high 
degeneracy
[B. Doucout et al., PRL 90,  107003 (2003)]

backbone



  

Some examples of inhomogeneity effects (II)

“Wedding cake” of Mott domains 
surrounded by superfluid regions 
for bosons in a lattice + a magnetic 
trap 
[M. Greiner et al., Nature 415, 39 (2002) – Batrouni 
et al., PRL 89, 117203 (2003)]

Junction of three quantum 
wires: new fixed points
[M. Oshikawa, C. Chamon, and I. Affleck, 
PRL 91, 206403 (2003); J. Stat. Mech. 
0602, P008 (2006)]



  

Some examples of inhomogeneity effects (III)

Critical behaviour at the junction of 
spin networks: local magnetization 
on a disordered bulk
[R. Marchetti, M. Rasetti, P. Sodano and A. 
Trombettoni, submitted]



  

Superconducting weak links: a 
Josephson junction

Josephson current at T<TBCS



  

A superconducting Josephson 
junction

-) In absence of fields:  1 2sinCI I   

-) The critical current is proportional to the gap  

 -) In a SQUID the critical current can be tuned using a magnetic 
  field: 

0

( 0) cosC CI I  
     

-) At finite temperature 
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A Bose-Einstein condensate in a double well 
is a bosonic Josephson junction:

Analogies between bosonic and 
superconducting Josephson junctions

M. Albiez et al., PRL (2005)
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EJ Josephson coupling



EJ  Ec Classical XY regime



EJ  Ec
Quantum XY regime

Theoretical models I: 
superconducting Josephson networks

(Quantum Phase model)
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Theoretical models II:  
bosons in optical networks

(Bose-Hubbard model)
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ˆ n j large Quantum Phase model for 
superconducting Josephson networks 

In the following: Josephson networks on discrete structures which 
are not necessarily regular lattices
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Mean-field analysis

 2tanhi iS qJ S i   

 2 tanhi ii qJ S qJ S    usual mean-field equations, 
with magnetization at 
low temperatures  

Local order parameter:
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Good agreement with Monte Carlo results, even in d=2



  

Is it possible to have a phase transition 
on a part of the network by controlling 
the inhomogeneity? Eventually when the remaining 
part is disordered, or when the dimension of this part is lower 
of the critical dimension…



  



  

Local phase transition: spherical model
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eigenvalues of the adjacency matrix
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  for finite temperature  0cT 
R. Marchetti, M. Rasetti, A. Trombettoni, and P. Sodano, submitted



  

Classical statistical mechanics models 
with inhomogeneities: Ising model

Ising model on a book graph



  



  



  



  



  



  



  

Adjacency matrix



Aij 
1 if i - j is a link
0        otherwise




Coordination number
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j
 Chemical distance ijd

(shortest path from i to j) 



  

Formed by NS states and divided in 3 parts:  { E0 , 0 , 
E+}  pL-1 delocalized states with  0 
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and 

E+>2t
two bound states (E0 : localized ground-

state)
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 p E0  2t Gapped Spectrum

Density of states:
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with the interwell
barrier V0     2π 

50 KHz and filling
f      200 then:

EJ     50 nK

















Typical of one-dimensional 
condensate [see W. Ketterle and 
N. J. van Druten, Phys. Rev. A 
54, 656 (1996)] 

Thermodynamics for bosons hopping 
on a star lattice 

I. Brunelli et al., J. Phys. B 37, S275 (2004) 
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