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Outlook

Role of topology in inhomogeneous networks
1) Free bosons
2) Copper pairs
3) Hard-core bosons

4) Limit of large n of O(n) models



Inhomogeneous network = non-translationally invariant
network

Inhomogeneity due to topology (= how the lattice sites are

connected) and/or to external fields

- Long term goals

To induce desired macroscopic coherent behaviors by acting
on the topology of networks:

Enhance response of the system

Reduce effects of noise



Free bosons on a star lattice

arms

7. coordination number of a given site: 2

. : 2 +
Total number of sites NS pL 1 2o coordination number of the center: p
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Ground-state wavefunction
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Boson distribution
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Free particles on a comb lattice
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Combs of Superconducting Josephson
junctions
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Bogoliubov-de Gennes theory
for the critical current enhancement
in comb shaped Josephson networks

‘/I“ BETS islands

Inhomogeneous Comb Homogeneous Chain
1 =(x,y)
X = position on the backbone i = position on the chain

y =position on the finger
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Spectrum
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Planewave solutions

“Hidden” spectrum of localized states



Bogoliubov-de Gennes equations:
continuous case

For an inhomogeneous fermionic systems with attractive
interactions
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Bogoliubov-de Gennes
Equations:
lattice case

Discretization: U (r) =D, u, () 4,(r); v, (r) =} v, ()¢ ()

g, u (i)—ZF (j)+A(i)va(i)
Lattice BdG Equations
EVd ()= Z i a(])+A(1)u ()

T . i g o /3)
= th\U. +U()0,- 16,  AG) T_V 2, v, ()V. (@) tanh Eea]
Encoding the network’s Self-consistency condition
connectivity (=topology)
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Lattice Bogoliubov-de Gennes equations
for the comb

Away from the backbone, the fingers may be regarded as a
linear chain

(U(i)=U_and AG)=A,). Setting on the backbone U(i)=U,and
AG)=A4,, one gets with

2
A, =A_+ s fdk LT ﬁgk]
¢ e N1+cos’k

Contribution of the localized

eigenstates of the adjacency matrix
At low temperature:
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Comparison for the critical
currents with the experimental

results
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Cooper pairs are hard-core bosons: XX
model on the Y-junction (i.e., hard-core
bosons on a Y-junction)
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For a chain

!

Jordan-Wigner transformations

But for a Y-junction?!



Proposed procedure to perform a Jordan-
Wigner transformation

giving raise to a local fermionic model (1)
[N. Crampe' and A. Trombettoni, Nucl. Phys. B (2013)]

Introduce an auxilary site “0”
HX = 1d(0) & HEX

H3** acting on the Hilbert space C? @ (C?)®3E

H)X acts as H f“)“ on the last 3L C?-spaces and trivially on the first
C2-space

[see as well subsequent papers by A. Tsvelik in 2014-2015
for the Ising transverse field model at the critical point with
the generalization to more than 3 legs]



Procedure to perform
a Jordan-Wigner transformation

giving raise to a local fermionic model (1l)
[N. Crampe' and A. Trombettoni, Nucl. Phys. B (2013)]

Jordan-Wigner transformation

j—1

j—1 j—1
c1(j) =" (H nf(ﬂ')) o7 (j) . (i) =1 (H o5 (k )) o3 (j) . es(i) =" (H ag(m) o3 (7)
k=1

k=1
L L L

nt = o*(0) H o5(k)os (k) , n?Y =0a%(0) H oi(k)os(k), n*=0c7(0) H oi(k)os(
k=1 k=1

i) the operators ¢,(j) have to be fermionic
ii) the operator 7 has to be a-th component of a spin operator
iii) the operators ¢, (j) and the operators 7* have to commute

Notice that for a spiral ordering the Hamiltonian would be not quadratic...

k)



Final result: a Kondo model

L-1
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In the continuous limit the obtained
Hamiltonian is integrable!

!

“Topological” Kondo model
[B. Beri and N. R. Cooper, PRL (2012)]

Exact results
At T=0 - A. Altland, B. Béri, R. Egger, and A. M. Tsvelik, J. Phys. A (2014)

At finite T = F. Buccheri, H. Babujian, V. E. Korepin, P. Sodano, and A.
Trombettoni, Nucl. Phys. B (2015)



Exact results include:
junction ground-state energy

o (M2 ‘ 3M—2 '

M+2 ' 3M—2 /
r (4(M—2) - (Miz)x) r (4(M—2) + (Miz)x)

0 0 .
EP =EP (1, M)=ilog

junction entropy at T=0

M
Sgo) = log,/ 5 (even M) , 530) = log~v M
, : 3 2(M-2)
junction specific heat: . ( T M
J N = T
Tk Ty >~ e MM-2)

and the junction free energy [not reported here]

Results available also for the anisotropic XY model in a transverse

fields on a Y-junction [D. Giuliano, P. Sodano, A. Tagliacozzo, and A. Trombettoni, NPB
(2016)]



How to do it with ultracold atoms?

We need:

1) hard-core bosons (in the continuos
limit) - Tonks-Girardeau gases

2)...we need as well a Y-
junction!

Holographic traps provide an ideal tool to
perform such geometries



Holographic optical traps for
atom-based topological Kondo

devices

[F. Buccheri, G. D. Bruce, A. Trombettoni, D. Cassettari, H.
Babujian, V. E. Korepin, and P. Sodano, NJP (2016)]

Kondo temperature with barriers of 2-3 microns is ~5-10 nK



Outlook

Role of topology in inhomogeneous networks
1) Free bosons
2) Copper pairs
3) Hard-core bosons

4) Limit of large n of O(n) models » work in progress
with Nikita Titov. Main result: the limit of large n,
that for translationally invariant systems gives the
free bosons, is not giving free bosons for
inhomogeneous networks - the Ilocalized state
contribution disappears



Thanks!




Creating a star-shaped network
with ultracold bosons

7 Corresponding
network

[
»

.
V(x) ~V, cos’(kx)

Temperatures ~ 0-500 nK k :2% A ~800 nm

Number of particles ~ 1000-10000 i K> k7

Number of wells ~ 100 & 2m

V, =s -E, s ~10- 30



Lattice Bogoliubov-de
Gennes equations for the
chain

E, =-2tcosk- i+U,; ¢ =N +E;

VN dE
el X
(- fﬂ \/A2C+(E- i+U Y

We have to set

tanh

g\/AZC +(E-+U )

&, ~E, chain
ie., p~U,~0 S ji AU, ~0
One gets the ,bulk” BCS results with Z’
A< <t A, (T =0)=8te """ )
k,I. =Cte >V (C ~4.54) ) .
A, (T =0) ’ T/T, !

~1.76

BTC




Retrieving the standard BCS theory

In the homogeneous limit, the quantum number a is the momentum k:

=N +E; E, = *k® /2m- p+U
u-» r :L-B/ZU-»eik'r V r L3/2v—» 1kr
k k
i E-
U; it iy Ve i
2 g; 2 &

Putting U=0 and u=E; and assuming a BCS point-like interaction,
one gets the BCS equation for the gap:

Lier+w

n(O) VBCS dE

o o

tanh




Relation between the chemical potential
and the Fermi energy

Using the equation for the number of particles

N =23 [dr|v,(r)[ +23 fdr £, Qu ()} - v, (r)[)
it follows at T=0 when A<<E,
u-U=~E,

In general: since U<O0, then u<E,, increasing the attraction,

the Hartree-Fock term U increases and the chemical potential u
decreases.



Superconducting Josephson junctions
on a comb lattice

On a comb of superconducting Josephson networks, one
expects that critical currents along the backbone
increase and along the fingers decrease:

a) 4.2 K
b) 1.2 K 5
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yome examples of inhomogeneity effects (|

Ground states with

degeneracy

[B. Doucout et al., PRL 90, 107003 (2003)]
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Free bosons undergo Bose-Einstein
condensation: they localize on the

comb’s backbone
[R. Burioni et al., EPL 52, 251 (2000)]

Superconducting grains: increasing
the Josephson critical current along

the backbone
[P. Sodano et., New J. Phys. 8, 327 (2006)]



ome examples of inhomogeneity effects (I

Junction of three quantum

wires: new fixed points

[M. Oshikawa, C. Chamon, and |. Affleck,
PRL 91, 206403 (2003); J. Stat. Mech.
0602, PO08 (2006)]

, “Wedding cake” of Mott domains
e i i surrounded by superfluid regions
. for bosons in a lattice + a magnetic

- - ’ ‘ ’ il

[M. Greiner et al., Nature 415, 39 (2002) - Batrouni
et al., PRL 89, 117203 (2003)]




ome examples of inhomogeneity effects (Il

Critical behaviour at the junction of
spin networks: local magnetization

on a disordered bulk

[R. Marchetti, M. Rasetti, P. Sodano and A.
Trombettoni, submitted]




Superconducting weak links: a
Josephson junction

Josephson Effect

Superconductor 5 Superconductor

e

Electron Pair

Josephson Junction

A /
o bmmm e m <

superconcucting & oo
Monsupe rconducting

Current —_— |
! Current

— . |
1 'l...l' }

Josephson current at T<T,

Fig. 14



A superconducting Josephson

junction
-) In absence of fields: I ZIC Sin (% = %)

The critical current is proportional to the gap A

In @ SQUID the critical current can be tuned using a magnetic
| d:

T D
I.=I.(® =0) |cos| —
¢ =l (P =0) >
-) At finite temperature
I.(T) A (T) A(T)
(()) A (0) 2k, T Ambegaokar-Baratoff




Analogies between bosonic and
superconducting Josephson junctions

A Bose-Einstein condensate in a double well
IS @ bosonic Josephson junction:

illations

¥ Sl
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M. Albiez et al., PRL (2005)



Theoretical models I:
superconducting Josephson networks
(Quantum Phase model)

~ 1 A A L
HZEZQlCl]Qj- EJZCOS(qu- QDJ)
(i.J) W) )
[ l,nj]:l s Q, =2en,
C ., Capacitance
L matrix
C-l
E —=e? b ~  Charging energy
: 2
E, > Josephson coupling
LE,>>L, ~  Classical XY regime

E ; << E X »  Quantum XY regime




Theoretical models ll:
bosons in optical networks
(Bose-Hubbard model)

A=Y AU, i - (u- g)Zn-—Z(a;a +a'a, )

2 <i,j> <1 ,J>

\/7 < > Iarge Quantum Phase model for
P e

Superconducting Josephson networks

In the following: Josephson networks on discrete structures which
are not necessarily regular lattices



Mean-field analysis

Local order parameter:
(S;) =tanh (BqJ (S;)+ BQI?)

Qi° <<qJ = <Si> ~tanh (fqJ <Si>)15ual mean-field equations,
with magnetization at

low temperatures
Qi°>>qJ = <Sl.> ~tanh (/BQiz)

Qlcz :qJ:> <i<ic <Sl> N(]-' T/Tc)l/2
Lol <Si> ~1

bod agreement with Monte Carlo results, even in d=2



Is it possible to have a phase transition
on a part of the network by controlling

the inhomogeneity? Eventually when the remaining

part is disordered, or when the dimension of this part is lower
of the critical dimension...



SOVIET PHYSICS JETP

VOLUME

22, NUMBER 4

ISING MODEL WITH INTERACTION BE TWEEN NONNEAREST NEIGHBORS

V. G. VAKS, A. I. LARKIN, and Yu. N. OVCHINNIKOV

Submitted to JETP editor April 21, 1965

J. Exptl. Theoret. Phys. (U.S.8.R.) 49, 1180-1189 (October, 1965)

A two-dimensional Ising lattice is considered in which, besides the usual interaction, there
is an interaction along diagonals between nodes with equal row-plus-column parities, The
free energy and the spontanecus magnetization are found as functions of the temperature,
The form of the correlation function at large distances is derived at and close to the phase-

transition point.
1. INTRODUCTION

THE Ising model consists of a lattice of dipoles,
each of which takes only two positions and inter-
acts only with its nearest neighbors. This model
is atfracting great interest in connection with the
theory of phase transitions of the second kind. It
is argued that phase transitions in binary alloys
and with changes of crystal symmetry, and also
the behavior of substances near the critical point,
are described by this model.""” Therefore it is
interesting to ascertain how sensitive the results
are to the form of the model, and in particular
whether there are changes of the nature of the
singularity in macroscopic quantities and of the
shape of the correlation function when'interac-
tions with nonnearest neighbors are included.

In the present paper we consider a two-dimen -
sional lattice, and include in addition to the inter-
action of nearest neighbors an interaction of
certain nonnearest neighbors.

2. CALCULATION OF THE FREE ENERGY

Let us consider a two-dimensional lattice of
the Ising type, consisting of two kinds of “atoms??
which are arranged in a checkerboard pattern and
interact with each other in the way shown in Fig.
1. The interaction energy between different
atoms, i.e., along vertical and horizontal direc—

tions, is ~J,, and thal along the diagonals is

S
S

Srmmm e G e

N

3

—Jy. The difference between this model and the
ordinary Ising lattice is that besides the interac-
tion between nearest neighbors there is also an
interaction along the diaponals for the atoms of
one kind. For J; = 0 the system goes over into an
ordinary Ising lattice,
The partition function is given by the expres-
sion :
L

Al
7= exp [T—j G letar)

(o) R, i=1

I <
+TT' B M0 (Gups, 1t =+ Oy, 14) ],
T

Ou=t1, =1/ (—1)H] 1

where L is the number of atoms in a row or
column. The expression (1) can be put in the
form

Z=(1—aY)n(L— y)-nag,

S=3 11 (14 zopou) (1 4 zomicrsn) (1 + ynaouoneg, o
(@) k1

X (4 ynw out oy, 14). (2)
Here x = tanh(J,/T}, y = tanh (J5/T), and
N = L? is the total number of atoms, The yuantity
S is a polynomial in x and y, in which the coef-
ficient gpy of x"y™ is equal to the number of
ways closed polygons can be constructed in which
the total number of vertical and horizontal links
is n and the tolal number of diagonal links is m
(cf., e.g.,[0). .

It is shown in a paper by Vdovichenko 9 that
lor the ordinary Ising lattice the quantity gnm
can be put in the form of a sum aver closed loops,
each loop heing taken with the factor (—1)%,
where v is the number of ihtersections. Our
present case differs from the usual one by the
fact that there can be intersection not of only two,

820

APRIL, 1944

T/(J;P+Jfl?)yf

/
b & VI
JEIJ."{"J} p—p,._j.ff

£




Local phase transition: spherical model
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* = 2
kT =72
p-1
1
Of course M :—Z<Si> =(for finite temperature(T, =0)

N i R. Marchetti, M. Rasetti, A. Trombettoni, and P. Sodano, submitte




Classical statistical mechanics models
with inhomogeneities: Ising model

Ising model on a book graph

)




Ising on book-like lattice
3 Layer
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Ising on book-like lattice
3 Layer
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Ising on book-like lattice
Defect Behaviour Comparison - 60x60 lattice

al




G—a 20L 16118l KT =26

Exponential decay of axis magnetization per site as a function of
distance from preferred axis above the global critical temperature T_
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Mean Field Prediction
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Set of sites i =V
Set of links i-j = L

, _ 1ifi- jisalink
Adjacency matrix A; =1,

Chemical distanced,
(shortest path from i to j)

Coordination numberz, :ZAU.
j



Energy spectrum
Formed by N. states and divided in 3 parts: { E,, o,,

£++—plL-1 delocalized states with E € [-21,2t]

/'

1
: pE)=D0E- E, ) — p(E)=
Density of states n AL - B
E,<-2t
'wo bound states—— ;nd (E,: localized ground-
E.>2t state)
E,=-1—2
p-1
p=2 = By =28 Linear chain

pz2 —— AQ)=|E |- 2t |Gapped Spectrum




Thermodynamics for bosons hoppmg
on a star lattice

5 N, p(E)
N, =N + f : 1e/3(’5 =5 1+NE+
Lk e i N

Excited —_ T
Ground-State P dsaiesc N S
E, =24
T<T. — Ne, #0 | T, ~ i : :
N, ks, with the interwell
~ barrier V,~2n h

Topélogy effect 50 KHz and filling

f =200 then:
A T E, "50nK
b e B s i Typical of one-aimensionat
T condensate [see W. Ketterle and
N. J. van Druten, Phys. Rev. A

54, 656 (1996
l. Brunelli et al., J. Phys. B 37, S275 (2004) ( )]
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