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Abstract: Power and energy requirements for quantum computers based on silicon flip-flop qubits are 

analysed. Using rotated surface codes, scalability and thermal constraints are studied.  
 

Power and energy constraints are among the most critical limiting factors in scaling-up quantum computers. 
This study examines the energy and power requirements for such systems based on silicon flip-flop (FF) qubits—
a unique donor-quantum dot-based qubit design [1,2]. By employing the rotated surface code (SC), a quantum 
error correction code with one of the highest threshold error rates [3], we estimate the energy consumption of 
logical qubits implemented on 2D arrays of FF qubits at varying code distances d. Our analysis integrates gate 
sequences and noise impact on fidelity [4], time constraints, electronics power dissipation, and extends a thermal 
model for quantum computers [5] that accounts for cryogenic components (Tq =0.1K, Tcryo=4 K) and room-
temperature electronics (T0=300K), as illustrated in Fig. 1a. 

The results highlight significant scaling challenges, particularly thermal constraints, and estimate a 
computation power per qubit in the range of 4–400 mW/qubit, depending on the code distance. With state-of-
the-art cryo-electronics and cryostat technology, the scaling-up of this quantum computer architecture is mainly 
limited by the cooling power at Tq, potentially supporting several hundreds logical qubits for specific code 
distances, as shown in Fig. 1b, and requiring a total power in the kW range.  

 

a)      b)  
 
Fig. 1 a) Scheme of the quantum computer architecture. A PC at T0 controls the entire system, sending signals to and 
receiving signals from the cryogenic section at Tcryo. The cryogenic section is composed by a digital control unit and analog 
devices. The digital control unit is responsible for SC error syndrome decoding and is implemented using an ASIC, while the 
analog control part handles input/output operations including DACs, mixers, local oscillators, LNAs, and ADCs. 
Interconnections extend to the cryogenic base stage at Tq, where analog MUX and DEMUX circuits route input/output 
signals to interface with the entire 2D array of qubits. b) Symbols represent the largest number of logical qubits nLmax for 
which all the power constraints �̇�! ≤ �̇�!"#$ for i=1,2,3 at the corresponding temperatures (Tq, Tcryo, T0) are satisfied, vs. the 
code distance d. The dashed, dot-dashed and dotted red curves indicate the maximum number of logical qubits allowed if 
only �̇�%"#$ or �̇�&"#$ or �̇�'"#$ holds, respectively. 
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