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Abstract: In the present work we demonstrate an efficient experimental technique for measuring the two-
point cross-spectral density of a monochromatic field averaged over the azimuthal degree of freedom, 

representing the radial spatial coherence of the field. 
 

Coherence refers to correlations between field vibrations at two separate points in degrees of freedom 
such as space, time, and polarization. In the context of space, coherence theory has been formulated between 
two transverse positions which can be described either in the cartesian coordinates or in the cylindrical 
coordinates. When expressed in cylindrical coordinates, spatial coherence is described in terms of azimuthal 
and radial coordinates. The description of spatial coherence in the radial degree of freedom has been 
formulated only recently [1].  

In the context of space, coherence theory has been formulated between two transverse positions and is 
referred to as transverse spatial coherence. When expressed in cylindrical coordinates, the spatial coherence 
can be expressed in terms of radial and azimuthal coordinates. In the azimuthal coordinate, a measure of 
coherence based on averaging over the radial coordinate has been particularly suitable for several experiments 
[2-3], such as for instance the angular Schmidt spectrum of entangled two-photon fields. More recently, the 
theory of coherence has been formulated for radial variables. In particular, in Ref. [1] it is defined a measure of 
coherence based on averaging over the azimuthal variables. Just as the angular degree of coherence provides 
information on the OAM spectrum, the radial degree of coherence can be used to get the radial mode 
spectrum [1,4]. 

In the present work, we demonstrate an efficient experimental technique for measuring radial coherence, 
and we report measurement of radial coherence of different types of radially partially coherent optical fields. 

 

 
Fig. 1 Radial cross-spectral density function for incoherent mixture of 11 LG modes (𝑝 = 0 to 𝑝 = 10). (a) The recorded 
interferogram for HWP at 0°. (b) The recorded interferogram for HWP at 45°. (c) The 2D radial cross-spectral density 
function 𝑊 obtained by taking the difference of the recorded interferograms in (a) and (b). (d) One-dimensional cut of the 
plot of the cross-spectral density function 𝑊. The inset shows the degree of coherence function 𝜇 

 
The radial degree of freedom in combination with the angular degree of freedom can be leveraged for 

providing very high-dimensional single-photon states for quantum information applications. 
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Fig. 2. Radial cross-spectral density function for individual LG mode ? = 4. (a) The
recorded interferogram for HWP at 0�. (b) The recorded interferogram for HWP at 45�.
(c) The 2D radial cross-spectral density function , obtained by taking the difference of
the recorded interferograms in (a) and (b). (d) One-dimensional cut of the plot of the
cross-spectral density function , . The inset shows the degree of coherence function `.
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Fig. 3. Radial cross-spectral density function for incoherent mixture of 11 LG modes
(? = 0 to ? = 10). (a) The recorded interferogram for HWP at 0�. (b) The recorded
interferogram for HWP at 45�. (c) The 2D radial cross-spectral density function ,

obtained by taking the difference of the recorded interferograms in (a) and (b). (d)
One-dimensional cut of the plot of the cross-spectral density function , . The inset
shows the degree of coherence function `.

average, we get the radial cross-spectral density function given by [23]:
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This radial cross-spectral density function quantifies the correlations between any two radially
transverse points located at distances A1 and A2 from the origin, independently of their azimuthal
positions. Further, we define the complex degree of radial coherence as follows:

`' (A1, A2) =
,' (A1, A2)p
�' (A1) �' (A2)

, (2)

where �' (A) = ,' (A, A) = 1
2c

Ø c

�c
, (A, \, A, \)d\ is the radial intensity distribution.

2.2. Radially partially coherent fields: Incoherent mixture of Laguerre-Gaussian (LG)

modes

We first consider the class of partially coherent fields that have coherent mode representation
in the Laguerre-Gaussian (LG) basis. An LG mode LG;=0

? (A) [36, 37], with orbital angular
momentum (OAM) index ; = 0, is radially perfectly coherent, having a degree of radial coherence
of unity. If we consider an incoherent mixture of LG modes, having different ?-index with the


