

Number of steady and asymptotic states of quantum evolutions

Daniele Amato^{1,2}, Paolo Facchi^{1,2}

¹ Dipartimento di Fisica, Università di Bari, 70126 Bari, Italy ² INFN Sezione di Bari, 70126 Bari, Italy

Abstract

We will discuss sharp upper bounds on the number of linearly independent steady and asymptotic states of discrete- and continuous-time Markovian quantum evolutions. Importantly, the bounds depend only on the dimension of the system.

Let us consider an open quantum system described by a finite-dimensional Hilbert space \mathcal{H} with $d = \dim(\mathcal{H})$. Let $\mathcal{S}(\mathcal{H})$ be the set of density operators on \mathcal{H} , i.e. the states of the system under account.

The dynamics in a fixed time interval $[0, \tau]$, with $\tau > 0$, is described by a quantum channel Φ , viz. a completely positive trace-preserving map on the space $\mathcal{B}(\mathcal{H})$ of linear operators on \mathcal{H} . If the state of the system at time t = 0 is $\rho(0) \equiv \rho$, its discrete-time evolution at time $t = n\tau$, with $n \in \mathbb{N}$, will be given by the action of the *n*-th fold composition Φ^n of the map Φ , i.e. $\rho(n\tau) = \Phi^n(\rho)$, with $n \in \mathbb{N}$.

The asymptotic evolution, which corresponds to the limit $n \to \infty$, takes place within the attractor subspace [1]

Attr(
$$\Phi$$
) = span{ $X \in \mathcal{B}(\mathcal{H}) | \Phi(X) = \lambda X$ for some $|\lambda| = 1$ }. (1)

In particular, any evolved state $\Phi^n(\rho)$ asymptotically moves towards one of the states $\rho_{as} \in Attr(\Phi)$, which we will call the asymptotic states of Φ . Moreover, the attractor subspace contains the fixed-point subspace

$$\operatorname{Fix}(\Phi) = \{ X \in \mathcal{B}(\mathcal{H}) \, | \, \Phi(X) = X \},$$
(2)

involving the steady states of Φ , i.e. $\Phi(\rho) = \rho \in \mathcal{S}(\mathcal{H})$.

In this talk we will focus our attention on the dimensions $\ell_0 = \dim(\operatorname{Fix}(\Phi))$ and $\ell_P = \dim(\operatorname{Attr}(\Phi))$ of the fixed-point and attractor subspaces of the evolution induced by Φ , respectively. Importantly, ℓ_0 (ℓ_P) represents the number of linearly independent steady (asymptotic) states of the dynamics [2]. If Φ is a unitary channel different from the identity 1, namely $\Phi(\cdot) = U \cdot U^{\dagger}$ with U non-scalar unitary on \mathcal{H} , then the system is closed, and we find that [2]

$$\ell_0 \leq d^2 - 2d + 2, \quad \ell_{\rm P} = d^2,$$
 (3)

while if Φ is not unitary, viz. the system is purely open, we obtain [2]

$$\ell_0 \leqslant \ell_{\rm P} \leqslant d^2 - 2d + 2. \tag{4}$$

Interestingly, the bounds (3) and (4) are sharp, and they only depend on the dimension d of the system. Similar bounds to (3) and (4) may be obtained for continuous-time Markovian evolutions [2].

References

- [1] D. Amato, P. Facchi, and A. Konderak, "Asymptotics of quantum channels", J. Phys. A: Math. Theor. 56, 265304 (2023).
- [2] D. Amato and P. Facchi, "Number of steady states of quantum evolutions", Sci. Rep. 14, 14366 (2024).