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Abstract: We establish strong connections between quantum shadow tomography and quantum extreme 

learning machines, showing that both can be framed under a single unifying metrological perspective, differing 
only in their prior assumptions. 

 

We present a unifying perspective on shadow tomography and quantum extreme learning machines (QELMs), 
revealing that both approaches can be viewed as quantum estimation techniques that differ mainly in their 
assumptions regarding measurement calibration. 

 
Shadow tomography is a powerful framework for estimating properties of quantum states without incurring 

the exponential overhead typically associated with full state tomography, offering strong theoretical guarantees 
and scalability. By encoding measurement outcomes into compact “classical shadows,” this technique makes it 
possible to efficiently approximate many observables with rigorous error bounds. It thus provides a flexible and 
resource-efficient platform for characterizing diverse quantum properties—ranging from simple expectation 
values to more complex tasks like entanglement detection. On the other hand, QELMs and closely related 
quantum reservoir computing architectures avoid the need for extensive training of quantum parameters or 
high-fidelity control. Instead, the intrinsic dynamics of a quantum system—such as single-photon quantum walks 
in high-dimensional orbital angular momentum spaces—serve as a computational reservoir. This design enables 
robust learning of target quantum properties, including state fidelities and entanglement witnesses, with 
minimal experimental calibration. By only training classical post-processors directly on the measured outcomes, 
QELMs efficiently reconstruct expectation values of observables and other properties, remaining remarkably 
resilient to noise and other experimental imperfections. 

 
To demonstrate the practical viability of these concepts, we discuss experimental implementations QELMs in 

a photonic system. These experiments confirm that precise knowledge of the measurement apparatus is not 
essential for reliable quantum state reconstruction or entanglement detection. This underscores the synergy 
between the theoretical underpinnings of shadow tomography and the versatility of QELM-based 
implementations in noisy intermediate-scale quantum platforms. 

 
Overall, our findings highlight an avenue toward resource-efficient quantum state characterization readily 

adaptable to near-term quantum devices. By illustrating the interplay between standard quantum estimation 
principles and modern machine learning paradigms, we offer a novel framework for advancing quantum 
technologies through scalable and experimentally feasible approaches. 
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